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1.0 Introduction

Two of the most common types of microwave filter are combline and interdigital filters using round rod resonators which give good performance from the UHF region up to 10GHz or more. Although these filters have been around for 40 years or so there are still a number of uncertainties and this article indicates how to resolve some of these from a practical view. The design methods shown use relatively simple equations, rather than charts and tables, which are primarily aimed at obtaining the important physical dimensions of resonator spacing, tap heights etc. The concept of coupling bandwidths (CBWs), as described in [1], is used throughout the article.

The mathematical expressions shown and derived are not too difficult, and can easily be handled by  the use of a spreadsheet which has been written to accompany this article.

2.1 Filter Construction

Combline and interdigital filters are often constructed using a coupled slabline structure (circular rod between flat ground planes). A convenient way is to use a box and lid construction with all resonators of the same diameter.

Combline filters  (Fig 1a) consist of a row of coupled resonators which are all grounded at the same end and have a loading capacitor, which is usually tunable, at the other end. Interdigital filters Fig 1b consist of a row of resonators which are alternately grounded at opposite ends with a tuning capacitor usually being used at the other end. The resonator length of a combline filter is usually chosen to be between 20( and 80(. Interdigital filters have resonators, alternately grounded at opposite ends, which are usually regarded as being close to 90° long. However, as will be discussed later, there are advantages in shortening these to around 75° or less.

External coupling can be achieved, in both combline and interdigital filters, by use of  tapped structures as shown.
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2.2 Resonator Q

As with all bandpass filters, the passband loss is largely determined by the resonator Q, the number of resonators and bandwidth. 

The loss [2] is given by:  I.L (dB). 
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where  (g is the sum of the g values from 1 to n, BW is the bandwidth, and f0 is the centre frequency.

For example:

For a 5th order 0.0137dB ripple (25dB return loss) Chebyshev: (g is 5.86.

If f0 is 1000MHz, BW = 10MHz, & the Q=2500 equation (1) gives IL = 1.02 dB

The calculation and prediction of filter Q is not exact. Q being to a large extent dependent on the quality of such processes as plating and machining. However, a reasonable estimate can still be made as follows:

M,Y&J [3] (p167). give the max Q, in air, of a coaxial structure in copper as :

Q/b =3400 (f. 
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Where b is the cavity diameter, in inches, and f is in GHz.

If we assume that Q for silver should be around 5% better and rearrange the equation (using  c=(f) we obtain:

Q (ideal) =  (42165 /(f ) b/(








(3)


For an electrical length ( a de-rating factor of sin( can be included. Also for practical purposes a quality factor of 0.6 - 0.8 (QF) is needed to account for the effects of joints and surface roughness. Giving:

Q  =  QF sin ( (42165 /(f) b/(
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where b is the ground plane spacing, ( is the wavelength, and f is the frequency in GHz.

The inclusion of the length factor “sin( “ is open to some objection. It may be argued that the resonator structure consists of both a capacitor and shunt inductive line, and so the overall Q depends on the Q of each component. And, that  when the line and capacitor Qs are identical  the overall Q must be independent of electrical length and so no “sin(” term can truly be justified. However, it is usually more difficult to achieve high Q with the capacitor part of the structure. With shorter line lengths, which need a higher capacitance, it follows that there will be a lower observed Q. The inclusion of a “sin(” term may be justified this way, but perhaps should be treated with some caution. Reference to Cristal [4], who gives plots of Q, as a function of line and capacitor Q, for a range of electrical lengths, may be made as a  comparison.

The MY&J data is for a coaxial rather than a slabline resonator. It is probably a reasonable assumption that the difference between the two structures is small. The impedance required to give maximum Q is around 77( in coax line and 70( in slabline. Q as a function of impedance has a fairly broad maximum, so the reduction in Q if other impedances, say between  60( and 80(, are chosen should not be too great.

The Q of a cavity (from equation 2 ) can be expressed as:


Q=K b (f 

(5)

where b is the ground plane spacing. 

Levy et al. [5] suggest that K is not a constant, as the above simple expression would indicate, but is itself an increasing function of b/(, ranging from 75 GHz -1/2 mm-1 at b/( < 0.12 to 102 GHz -1/2 mm-1  at b/(= 0.18. On the basis of this it is reasonable to choose a more conservative quality factor for low b/( (say QF=0.6) and a more generous factor (say QF= 0.8+)  for high b/( in equation (4)

It should perhaps be repeated that the above method describes a way of obtaining a reasonable estimate  of the overall Q and that variations in measured Q will occur. If possible, a margin of 20% should be allowed in the absence of prior experience with a particular resonator structure.
2.3 Calculating the Filter Degree
The number of sections, N, in a filter is usually determined by a requirement to have a certain rejection R at a frequency f with an allowable in band ripple La
We need to perform a transformation to the lowpass prototype. A reasonable approximation for narrow to medium bandpass filters is: 

(’
=
 f0 (f/f0 - f0/f)
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where (’1 is the lowpass cutoff frequency. f0 is the effective mid-band frequency given by:

f0    =2Fcf  - (3BW2/4+Fcf 2)1/2
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where Fcf 
=  
f1+f2 


f1 and f2 are the band edge frequencies.
(8)
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For a Chebyshev response N is obtained from:

 

N 
>         cosh-1 ([(10R/10 -1 )/(10 La/10 -1)]
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Whilst it should be understood that this equation uses a transformation more applicable to a lumped element circuit, it is still a reasonable approximation for frequencies  close to the passband. With a combline filter the equation will slightly understate the high side rejection and slightly overstate the low side. However, the equation is completely invalid at frequencies much greater than fo. For instance, at the frequency where the resonators are 90( long there will be a transmission zero and the frequency where the resonators  are 180( longer than in the passband, typically  > 5fo (depending on resonator length), will be the centre frequency of a second passband.  An interdigital filter (of line length 90() produces a second passband at 3fo. 

In practice, a 10% margin on the rejection points  should be maintained. For example, greater than 55dB rejection should be aimed at, if 50dB rejection is needed at a certain frequency. If higher order passbands are likely to be a problem, it may be necessary to include an additional lowpass or bandstop filter in the structure. Equation (9) is also not applicable if cross couplings are included. In which case, it will be  necessary to analyse possible structures in terms of all the CBWs over the bandwidth of interest as described in [1].

The allowable ripple and in-band return loss are related by:

La = 10 log (1 - 10 -RL/10)







(10)
In practice, a safe design margin for return loss is probably around 15%.

2.4 Calculation of Resonator Spacings

If an ideal slabline structure is to be used, the spacing between resonators determines the CBWs, with high CBW being associated with close coupling. For a filter of N resonators there will be N-1 internal in-line CBWs (Kij) and two, usually equal, external CBWs (KE)
Referring back to Fig 1, it can be seen that coupled slabline consists of one or more circular resonators of diameter d centrally placed between two flat ground planes of separation b. The centre to centre rod spacing is si,i+1. In the case of an air dielectric:

The impedance of the resonators is given by: 
Z = 138 log (4b/(d)


(11)

The electrical length of the resonators is 

( = 2(L/(0      
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Where (0  = c/f0  & L is the physical length.

For interdigital couplings there is a relatively simple relationship between coupling bandwidth and round rod resonator spacing given, in his own nomenclature, by Dishal [6].

 Si,i+1 =
 b   
(0.91d/b - 0.048 - log Ki,i+1)


for i = 1 to n-1


(13)
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Incidentally, Dishal was the first to point out that the resonators of an interdigital filter could all be of the same diameter and that the separation between them could be adjusted to obtain the necessary coupling bandwidths to define its characteristics. This offered a considerable simplification over the then existing design methods.

As written previously, interdigital filters are usually regarded as having rod lengths of 90(. This can be difficult to achieve in practice as theory requires zero capacitance at the rod ends. However, there is inevitably some capacitance and usually a requirement to have a tuning capacitor. Both can be accommodated by choosing the rod length, to be, say, 80( or less, in exactly the same way as for a combline filter. In fact, it is often recommended to set  the resonator length plus the end gap to 90(. This flexibility suggests the possibility of mixed coupling of  different type.

As far as the author is aware, there are no references in the literature describing reduced interdigital coupling as resonator lengths are reduced below 90(. It is a reasonable assumption that this is likely to be small for length reductions of 10( or so. The effect is probably no worse than having very large gaps at ends of 90° rods which do, of course, also have the effect of reducing effective coupling length.

The calculation is slightly more complicated for combline couplings. Kurzrok [7] has shown that the normalised coupling coefficient 

KComb i,i+1  = 
1 (Ci,i+1/ε )              
  
Where  f(() = ( 2( / Sin 2( + 1)/2

(14)
f(() (Cg /ε + 2 Ci,i+1/ε) 

where Cg is the normalised capacitance to ground and Ci,i+1 is the normalised capacitance between adjacent resonators.

This can be compared with Dishal who gives for the interdigital case:

KID i,i+1 = 
4 (Ci,i+1/ε )              
  






(15)
( (Cg /ε + 2 Ci,i+1/ε)

So, the relationship between the couplings in the interdigital and combline case of  identical resonators can be written: 

KID i,i+1 = 
4 f(() KComb i,i+1 

(16)
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KID i, i+1 / f0  can now be  substituted into equation (13) to give the spacing for a pair of combline resonators as :

 Si,i+1 =
 b   
(0.91d/b + 0.1529 – log  (  ( 2( / Sin 2( + 1) KComb i,i+1 (    for i = 1 to n-1
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Dishal suggested, conservatively, a figure of 10% for the upper bandwidth validity of his expression. As the bandwidth increases, the resonator spacing decreases. With very wide bandwidth filters, therefore, there may be insufficient space for  inter-resonator tuning screws and it will be necessary to establish precise resonator spacings to achieve good  performance.

2.5  Calculation of The External Couplings
Besides the internal couplings, there are two external couplings which, together with the resonator length and  resonator impedance, determine the tap point as follows [8]:


(T =    sin -1 ( Z0 KE ( 0.5 sin 2( + ( ) ( 1/2





         (        2 f0 ZE                   (             (18)

where ZE is the impedance of the end resonator. Z0 is the system impedance. KE is the external coupling bandwidth. (T is the electrical length from the ground end of the end resonators to the tap point.

Dishal gives the following equation for an interdigital filter:


(T = sin -1 ( ( Z0 KE   ( 1/2
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which agrees with (18) for ( =90(. 

For a  filter in a 50( system.

                                            T(mm)  = 0.833   sin -1 (   12.5 KE ( sin 2( + (/28.65 ) ( 1/2
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where f0 is in GHz, ( is in degrees. 

In practice, the tap point is often changed due to the nature of the coupling structure. It is difficult, and fortunately not necessary, to ensure that the impedance of the tapping pin is close to 50(. It is usually considerably higher than this which tends to increase T, sometimes by 50% or more.  Measuring the input group delay or coupling bandwidth, on a VNA, as described in [1] will indicate if the tap point is correct. It is worthwhile trying to model the input reflected group delay using a simple tapped transmission line model, with the impedance and length of the tapping pin included, using one of several CAD packages as a check on the value given by the above expression. See [10] for a SuperStar  or Microwave Office file showing an example of this.

It is probably necessary to make some justification of the statement that combline and interdigital filters can be treated the same way as far as the calculation of tap point is concerned. Some references do seem to suggest otherwise, or at least do not point out that they can be treated in essentially the same way. The measurement of input group delay to check the tap point, involves shorting all other resonators as described in [1]. Therefore it should not matter if the filter is combline or interdigital, the structure in the shorted condition is identical, and equation (18) should apply equally to both.

2.6 Calculation of the Loading Capacitance
The loading capacitor necessary for resonance, in  both combline and interdigital resonators, is given by:

C
=     .      1     .
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       2( tan( f0 Zi
C(pF)   =     159.16                 where f0  is in GHz



(26)

        tan( f0 Zi





Zi is the impedance of the ith resonator. 

If the end capacitance consisted of just a parallel plate capacitor then the end gap would be straightforward to calculate. It is better to have slightly too little capacitance, or the gap slightly too big, and use a tuning screw to add the necessary extra capacitance. 

Using the work of B.F. Nicholson [11], who discusses the contributions of both parallel plate and fringing capacitances at the resonator end, it is straightforward to arrive at the following expression:

min end gap (mm)
= 
0.695D2 

where D is the resonator diameter in mm. (27)

 

100C - 2.61 D
    
&   C is the required capacitance in pF

which is a reasonable approximation for d/b < 0.5. (as is usually the case)

This calculation is especially important for  high power filters. It is desirable to have the tuning screw add only a small part of the required loading capacitance, as the close proximity of a tuning screw and a resonator is a potential point of breakdown. 

If a counterbore is used on the end of the rod, the end capacitance is of course reduced. The exact calculation of  this can be quite difficult but putting in a counterbore can be a convenient alternative to reducing resonator length if the gap turns out to be too small.

2.7 Combline Filter Example.

Suppose  N=5, ( =60° , BW= 10MHz, Ret Loss =25dB, f0 = 1GHz, b=30mm, & Res Dia (d)=12mm


The impedance is given as:

Z = 138 log b/d.   which is 69.4( with the above values.

The required coupling bandwidths are:

KE =12.56MHz
K12 = K45 =9.74MHz

K23= K34 = 6.82MHz


Substitution in equ (17) gives      


s’12 =
s’45
=   
43.68 mm 



s’23 =
s’34
=  
47.06 mm

Using equation (20) the tap point is:



T
= 
3.91 mm.

Using equation (26) the loading capacitance is:

C
=  
1.32 pF

2.8 The Effect of the End Wall

With a slabline construction, there is a slight, often overstated, problem with the end resonator of a tapped coupled filter,  due to additional capacitance to ground caused by the end wall. If the end wall distance is e, from the rod centre, then the end rod impedance is given by:

Z 1 or N  =  138 log (4 b tanh ( ( e ) )   






(27)



    ( d            b

The change in Z is small for e/b > 0.7. Any error in Z will cause a slight shift in the tap point and the loading capacitance. Discontinuities and lengths of non 50( line in the tapping structure, as discussed in section 2.5,  also cause a shift in the tap point and usually cause a much greater uncertainty, and so some measurement of KE and adjustment of the tap point is usually required at the development stage. An error in the end capacitance should just mean a slightly different screw setting.

3.0 Bandwidth Expansion in Combline Filters

One potential problem (and one potential benefit) to be aware of with combline filters is the effect of extra coupling and extra Q thought by Levy et al [5] to be due to the presence of evanescent modes. An alternative explanation is provided by Shapir and Shamir [9] who attribute the extra coupling to distortion of electric fields at the open end of combline resonators. Either way, the above expressions for resonator separation which are based on standard TEM theory do not account for  this effect. So, from a purely practical point of view, it is probably not worth worrying too much about the finer points of TEM theory as applied to combline filters. It is not going to give exactly the right answer anyway! 

There is no similar problem with interdigital filters. It seems fairly obvious that any distortion of the electric fields at the open ends is unlikely to affect the coupling in an interdigital filter as they are separated by the length of the resonator, which lends support to Shapir and Shamir’s theory. It is not so obvious why there should be no similar effect from evanescent modes. It may take a few years before these questions are fully resolved. In the meantime, if a quick design is required, it may be more straightforward to choose an interdigital structure. 

It is desirable to make b/( as large as is reasonably possible for maximum Q, but both Q and CBW are both reported to be even larger than would be expected for combline filters with a high b/(. So, there will be some extra benefit if the uncertainty in coupling can be tolerated. If coupling irises are used this effect should not be too much of a problem. These will end up slightly smaller than might have been anticipated. However, if a genuine slabline structure is used then the coupling bandwidth will probably need to be plotted as function of resonator spacing for a particular frequency and structure to obtain correct spacings. If this step is to be omitted, it is better to aim to have slightly too little coupling, say about 10%. Coupling can then be increased by including a tuning screw midway between resonators. Too much coupling will be obtained, which is much harder to correct, if the effect of evanescent modes (or electric field distortion) is neglected and so some attempt should be made to allow for this.  

Levy et al [5] use a term bandwidth ratio (BWR) defined as:

BWR 
= 
Measured Bandwidth/ TEM Bandwidth

and give plots for BWR against b/( of different s/b ratios. A quick estimate of BWR can be obtained from the expression:

BWR = (6s/b - 4) b/( +1.1
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where  s and b are the resonator and ground plane spacings respectively. This expression is a rough approximation to the Levy et al plots, which should be referred to for better accuracy, in the case of b/( between 0.05 and 0.35 and s/b between 1.5 and 0.80. Interestingly, the resonator electrical length does not appear to affect the value of BWR according to these plots.

Although the BWR can vary slightly from one resonator to another, a reasonably effective approach is to design all the resonator spacings for an overall smaller bandwidth than desired i.e.

Design Bandwidth = Desired Bandwidth




(30)




Average BWR

The coupling bandwidths themselves are not modified. These should still be measured and used as a check on the accuracy of the implementation.

The availability of 3D simulation packages such as CST Microwave Studio does enable the effect of BWE in combline filters  to be accurately modelled. Simple models, written for this purpose in MWS are available from the author on request.

4.0  Bandwidth Applicability

For bandwidths below 10% the above equations can be considered to be of reasonably good accuracy. Any problems can be solved by measuring the coupling bandwidths and modifying the filter structure accordingly.

For filter bandwidths between 10% and 20% the accuracy will be somewhat less and some inaccuracies may arise. However, the measurement of coupling bandwidths at the development stage is likely to indicate any necessary corrections.

The above equations can still be used, at least as a starting point, for filters with bandwidths of 20% or more. However, measurements of coupling bandwidths between adjacent resonators may not indicate all necessary corrections in the development stage. In the working filter, apart from the end resonators, each resonator couples with two others and so the measurement of the coupling bandwidth of resonator pairs may not be truly indicative of the coupling bandwidths of the working filter.

5.0 Conclusion

A series of equations and the background to their derivation together with their  limitations has been presented which provides a working method for the design of combline and interdigital filters. A spreadsheet (file c&i2.xls, Microsoft Excel version 7.0a ) has been written to illustrate the methods described in this article and is freely available from [10].
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