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A simple model of a slabline and coaxial resonator is developed which is useful  for calculating the resonant frequency at ambient and other temperatures. A spreadsheet written to handle the calculations is described. Practical results are presented for comparison with theoretical predictions.

1
Introduction

Interdigital and combline filters, constructed from commonly available metallic components, such as brass, aluminium, steel etc, invariably are affected by their thermal expansion and contraction. The effect is especially significant in very narrow band filters where the change in the resonant frequency of slabline and coaxial resonators can result in a significant unwanted shift in the pass or stop band over an operational temperature range.

One obvious solution, and a necessary one for certain critical applications, is to manufacture all components from a material with an ultra low coefficient of expansion such as ‘Invar’, a steel-nickel alloy. For less critical applications the choice of the correct combination of metals for the housing, resonator and tuning screws can lead to a considerable reduction in temperature sensitivity. 

The key to modelling temperature effects depends on having reasonably accurate expressions for the parallel plate and fringing capacitances which are needed to accurately predict the resonant frequency, given the relevant dimensions of the structure. Knowing the coefficients of expansion of the component parts, it is possible to calculate the modified dimensions and therefore the new resonant frequency at a changed temperature. A method of facilitating this task using a spreadsheet  is demonstrated.

2 
Analysis of the Resonant Frequency 
[image: image3.wmf]Frequency Drift of Big Filter Cavity(Brass)

900

900.05

900.1

900.15

900.2

900.25

900.3

900.35

900.4

900.45

900.5

900.55

25

35

45

55

Temperature

Frequency



[image: image1.wmf]
The loading capacitor necessary for resonance, in both coaxial and slabline resonators of electrical length (, is:

C
=          1     







(1)




       2( f Z tan( 

which approximates to

C(pF)   =     
159155 

where f is in MHz      

(2)






f Z tan( 

This loading capacitance is usually obtained from the sum of the parallel plate, the fringing and screw capacitances.

C = Cp + Cs + Cf






(3)
Z  is the resonator impedance given to a good approximation by:

Z = 60 ln (b/d)
   

 for a coaxial structure 


(4)

or 

Z = 60 ln(4b/( d) 

for a slabline structure


(5) 

The parallel plate capacitance may be calculated as:

Cp (pF)  =    0.00885( d( 2  =  0.00695 d( 2



(6)


4x

  x

where x  is the gap (mm) between the end of the rod and the cavity.

Nicholson [1], presents a graph, from data attributed to Whinnery et al [2] showing the fringing capacitance of a slabline rod which can be approximated over the range d/b < 0.5 as:

Cf(pF) = 2.75 x 10-2 d( (pF)  





(7)

where d( is the resonator end diameter in mm.

Somlo [3] also gives plots for coaxial lines with step discontinuities. In the limiting case of the step being an open circuit, it is possible to approximate his curve as:

Cf(pF)= 0.0013b + 0.0164d( +0.0183d(2/b



(8)

where b is the coaxial outer diameter in mm.

Both [2] and [3] treat the resonator as terminating in an open circuit without consideration of the presence of an end wall. So, the expressions would seem to be valid only for relatively large end gaps. An electrical  field is present outside the ‘parallel plates’ of the resonator end wall, so there is always going to be some fringing capacitance and the assumption is made that the change from the open circuit value is small. The fringing capacitance when the gaps are small is only a small fraction of the total, so any uncertainty in the value should not be too serious a problem.

So we can write:  
resonant end gap (mm)
= 
0.00695d( 2
=
0.00695d( 2 





 

 Cp 
  

C – Cf -Cs

(9)

where d( is the resonator end diameter in mm. & C is the required capacitance, in pF, for resonance at a frequency f. Cf  and Cs are the fringing and screw capacitances.

If a ‘counterbore’ of diameter a is used on the end of the rod, the end capacitance is of course reduced. The parallel plate capacitance is reduced by an amount proportional to the cross sectional area of the counterbore but to some extent is offset by extra fringing capacitance. The exact calculation of this can be quite difficult and, at present, there is no known reliable source of data. A reasonable assumption might be that the effective cross sectional area is 90% of the real cross sectional area of the counterbore if the counterbore diameter is less than 50% of the end diameter of the resonator.

Therefore: 

resonant end gap(mm)= 
0.00695(d( 2  - 0.9* a2)





C - Cs- Cf




(10)

C, the total capacitance required for resonance, is a function of frequency and all the dimensions of the resonant structure. Equating the physical end gap with the resonant end gap will lead to a solution of either frequency or any one of these dimensions.

3 
Tuning screw capacitance

It is difficult to completely describe mathematically the behaviour of a tuning screw to include all fringing and parallel plate capacitances in the close proximity of a resonator end which may have a counterbore. However reasonable accuracy can still be obtained by choosing one of two possibilities:

1) The screw is approximately the diameter of the resonator and can be considered to be part of the cavity. Adjusting the depth of the tuning screw effectively varies the cavity height.

2) The screw diameter is smaller than the resonator and inserted into it forming a co-axial capacitor. The capacitance per unit length insertion can be calculated. The total crew capacitance is then just the product of  insertion depth and the capacitance per unit depth of insertion.

4 
Temperature Effects

If the dimensions of length above are defined at some temperature T0(0K), then with a temperature rise of T the new dimension will be given by


M(T+T0) = M(T0 )(1+ (T)






(11)

M is any linear dimension and ( is the coefficient of thermal linear expansion of the associated material.

The change in effective screw depth as a function of temperature can be expressed as:

(ls = l(r +ls(s –h(h







(12)

where (r, (s , (h are the coefficients of linear expansion (CEs) of the resonator, tuning screw and housing respectively.
As the resonator expands with increasing temperature it may be expected that the resonant frequency will decrease. However the cavity itself will expand, changing the end gap. If the cavity expansion is greater than the resonator expansion, the decrease in capacitance will tend to produce a frequency increase. If the two effects are equal, the resonator will be temperature stable.

There are also lateral effects to consider. For instance, the diameter of the resonator will increase with temperature to increase the parallel plate capacitance and change the impedance of the resonator. Some of these changes are very small and likely to be negligible. However, the use of a spreadsheet to re-calculate all parameters at any temperature rise T enables all calculations to be performed quickly and no simplifying assumptions need to be made.

The inclusion of temperature effects adds the variables of CE and temperature which may be obtained by solving the equation of physical and resonant end gap.

5 
Spreadsheet Calculation of Resonator Parameters
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6 
Practical Results and Discussion of Accuracy of Model

	No
	d(d’) mm
	b mm
	h mm
	l      mm
	Cav. Mat      
	Res.

Mat
	Scrw

Mat.
	Freq. 

theory MHz
	Freq 

meas MHz
	(F/(T theory kHz /degC
	(F/(T

meas kHz /degC

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	1
	10
	35
	22
	15.2
	Al(2)
	Br
	Br
	
	3130
	-62
	-58

	
	
	
	
	
	
	
	
	
	
	
	

	2
	10
	35
	22
	13.8
	Al(2)
	Br
	Br
	
	3520
	-69.8
	-61
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	3
	18
	35
	64
	59.5
	Al(2)
	Al(1)
	Br
	
	894
	-22.2
	-18

	
	
	
	
	
	
	
	
	
	
	
	

	4
	18
	35
	64
	59.5
	Al(2)
	Br
	Br
	
	890
	-13.1
	-9

	
	
	
	
	
	
	
	
	
	
	
	

	5
	10(19)
	28
	24
	23.5
	Al(2)
	Br
	Br
	
	903
	35.8
	37.6

	
	
	
	
	
	
	
	
	
	
	
	

	6
	10(19)
	28
	24
	23.5
	Al(2)
	Al (1)
	Br
	
	903
	-6.0
	-16.0

	
	
	
	
	
	
	
	
	
	
	
	

	7
	10(19)
	28
	24
	23.5
	Al(2)
	Al(1)
	None
	1000
	1003
	-4
	-23.8

	
	
	
	
	
	
	
	
	
	
	
	

	8
	10(19)
	28
	24
	23.65
	Al(2)
	Al(2)
	None
	859
	853
	-20
	-22.5

	
	
	
	
	
	
	
	
	
	
	
	



The resonators used in the tests were all of a coaxial type except for coupling apertures (in 1,2,3,4) milled into the side walls. These resonator structures can be described as somewhere between coaxial and slabline. 

The agreement between the theoretical and practical temperature coefficients as shown in Table 1 is reasonably good and within the limits of the uncertainty of the CEs. 

It is important to obtain accurate figures of CE for the particular materials used. For instance, the combination of brass resonators and an aluminium body is a common choice and, with some adjustment of the gap, can give good temperature stability. However, brass can have a CE of between 1.8 x 10-5

and 2.0 x 10-5  and aluminium a CE between 2.2 and 2.4 x 10-5. And so the difference can vary between 0.2 and 0.6 x 10-5; figures which can produce markedly different temperature coefficients in the resonator. 

This is shown in examples 6 and 7 which show the most disagreement. In these cases the gap between the resonator and end wall is small and the temperature performance is determined by the expansions of two similar but different materials. When the resonator and housing are made from the same material, as in example 8, the agreement is much improved.

The expressions used for the fringing and parallel plate capacitances present at  the end of the resonator are the result of some assumption and approximation and could be improved if more data were available. Nevertheless the good agreement between the observed and measured resonant frequencies shows that they are still useful.
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Appendix A


The Effect of Temperature Changes on Filter’s Resonant Frequency

By:
Januar Janapsatya

Date:
18/1/2000

Aim:
To Test the Accuracy of Peter Martin’s Temperature Compensation Program

Background:

Each filter is designed to work in a specific region of frequency.  As the filters are operating in RF region, the size of the filter has to be exact and any changes made to it will cause severe variation in its operating region.  Because the filters are not used in a controlled temperature room, it is expected that the filters will undergo temperature changes in their working environment.  Therefore, the filters were designed to compensate these temperature changes so that severe frequency drifts do not occur.  Peter Martin, an engineer in Filtronic Comtek, has developed a program to help the design engineers to do this.  The program has been proven to be accurate on several occasions.  However, it has never been fully tested to measure its accuracy in designing different kind of filters with different metals.

Method:

The brass resonator is going to be assembled in a test cavity (appendix A).  The filter is then going to be heated up to 80(C.  As the resonator inside is still cold at this point, the filter will be left alone until it reaches 50(C, which at this point the brass resonator should be at the same temperature as the body.  The difference in frequency will then be measured and compared with Peter Martin’s Excel Program’s prediction.  Aluminium and stainless steel will also be used as resonators to measure how accurate the program is.  A different test cavity with different resonators will also be used to see how the program works with different filters.  The second cavity will have brass and aluminium resonator.

Test metals:

Aluminium 5083 (Body)

Aluminium 2011 (Resonator)

Brass 385 (Resonator)

Stainless Steel 316 (Resonator)

When possible, the oven is going to be used for the experiment as it will be able to heat up the whole test cavity and its resonator evenly.

Test:

The cavity was heated up with a heat gun to 80(C and then left to cool down to around 55(C.  Measurements were taken when possible as the temperature changed very quickly.  The same test was done for the second cavity.

The oven was used and both filters were left inside for a period of time.  This was done to make sure that the filters were at the same temperature everywhere on the body.  It was found that the results from the heat gun and the oven differed by quite a large amount.  Therefore, it was decided that the oven is better to use as it heats up the filters evenly.

However, there was difficulties in getting the equipment for testing so the test in the oven was only conducted for the brass resonator in the first and second filter cavity.

Results:

See Appendix A.

Discussion of results:

Using the heat gun, the first test cavity with an aluminium resonator, the program’s prediction and the test results do no match.  The error is about 10kHz/(C.  This resulted from the resonator being colder than the outside of the body.  The same error also occurred with the second filter.

By using the oven, the results observed from the ones taken with the heat gun were very different.  The results from the oven were more in the positive frequency.  The first filter cavity with its brass resonator has a frequency drift of approximately 12kHz/(C compared to the program’s 11kHz/(C.  Therefore, the program predicted the results quite accurately.

Appendix A

	Big filter cavity(Brass)
	
	

	Temperature
	Frequency Drift
	Frequency

	25
	0
	900.5

	35
	-0.125
	900.375

	45
	-0.25
	900.25

	55
	-0.3125
	900.1875



	Small filter cavity(Brass)

	Temperature
	Frequency Drift
	Frequency

	25
	0
	901.7

	35
	0.1125
	901.8125

	45
	0.3
	902

	55
	0.4875
	902.1875



Fig 2








In the spreadsheet the actual gap is compared to the gap required for resonance and an error function is defined.(100 X the difference). Initially the temperature rise should be set to zero and the input variables, shown with their cells outlined,  adjusted to set the error function to zero. Macros, attached to ‘auto’ buttons on the sheet, can be used to set the variables accurately. 





If the behaviour of the tuning screw is initially not known, the resonator structure can be designed by setting f0 around 10% -15% high and the tuning screw depth to zero. The frequency can later be tuned down to f0 with the addition of a tuning screw capacitance.





The temperature sensitivity is determined by adding a temperature rise and re-solving for a new f0. 








Table 1














Fig. 1 shows the cross section of either a coaxial or slabline resonator, of length l, and diameter d. The ground plane spacing, in the case of slabline, or cavity diameter, in the case of coax, is b. The fringing capacitance, parallel plate capacitance elements and screw capacitance elements are Cf, Cp and Cs.











Coefficients of Expansion


Al(1)        2.28 x10-5


Al(2)        2.38 x 10-5











� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���








PAGE  


Peter Martin 4/3/2000

_1017042384.doc
[image: image1.png]Temperature Sensiti
i
Canity Height M m TH Dia @T
24.006

Cbore Dia. @T

28.007

Res. Type Coax 0 (MHz)

Canity Height@T Chore Dia
Cavity Diameter
Canity Diameter@T
Res. CE (/degk /A4 | 2.000E-05 | Cap. (pF) Req. for Resonance
Resonator Diameter

10.002

Res Impedance (ohms)

Resonator Dia.@T Gap Required for Resonance

ity of Cavity Resonators

000.504] Temp Rise (deg K)
19.000 ] Screw CE(/degk)

19.004

Screw Dpth

8500 | Eff. Screw Depth @ T

8502

61.78

4794

0.5010

0.00

Screw Cap. (pF/mm)

Tot.Add Screw Cap. (pF

Actual Gap@ T

Resonator Length
Res Length at T

Elect. Len(deg)@T

Temperature Coeffs. Of Expansion

Brass
Alurniniurmn
Stainless Steel

23.500 Error =

)

100

2.00E-05

2058

0.05

0103

23505

28.24

0DE-05
2.30E-05
1.60E-05

Adjust variables (in biue) to set
error function to zera, either manually
or using the Auto buttons.

Notes:

1)Termp Cueffs can vary significantly
depending on alloy composition

2) Dims in mm U.O.S

3) Chouse a screw cap. (pF/mm) which gives
a screw depth close to the actual or expected
setting. Too high a value can lead to errors

Peter Martin
3mam0








_1017077406.doc



_1011095737.xls
Chart1

		25

		35

		45

		55



Temperature

Frequency

Frequency Drift of Big Filter Cavity(Brass)

900.5

900.375

900.25

900.1875



Sheet1

		Big filter cavity(Brass)

		Temperature		Frequency Drift		Frequency

		25		0		900.5

		35		-0.125		900.375

		45		-0.25		900.25

		55		-0.3125		900.1875

		Small filter cavity(Brass)

		Temperature		Frequency Drift		Frequency

		25		0		901.7

		35		0.1125		901.8125

		45		0.3		902

		55		0.4875		902.1875





Sheet1

		



Temperature

Frequency

Frequency Drift of Big Filter Cavity(Brass)



Sheet2

		



Temperature

Frequency

Frequency Drift of Small Filter Cavity(Brass)



Sheet3

		





		






_1011095755.xls
Chart2

		25

		35

		45

		55



Temperature

Frequency

Frequency Drift of Small Filter Cavity(Brass)

901.7

901.8125

902

902.1875



Sheet1

		Big filter cavity(Brass)

		Temperature		Frequency Drift		Frequency

		25		0		900.5

		35		-0.125		900.375

		45		-0.25		900.25

		55		-0.3125		900.1875

		Small filter cavity(Brass)

		Temperature		Frequency Drift		Frequency

		25		0		901.7

		35		0.1125		901.8125

		45		0.3		902

		55		0.4875		902.1875





Sheet1

		



Temperature

Frequency

Frequency Drift of Big Filter Cavity(Brass)



Sheet2

		



Temperature

Frequency

Frequency Drift of Small Filter Cavity(Brass)



Sheet3

		





		






